
Ageing classification in glassy dynamics

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1996 J. Phys. A: Math. Gen. 29 1311

(http://iopscience.iop.org/0305-4470/29/7/005)

Download details:

IP Address: 171.66.16.71

The article was downloaded on 02/06/2010 at 04:09

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/29/7
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.29 (1996) 1311–1330. Printed in the UK

Ageing classification in glassy dynamics
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Abstract. We study the out-of-equilibrium dynamics of several models exhibiting ageing. We
attempt to identify various types of ageing systems using a phase space point of view. We
introduce a trial classification, based on the overlap between two replicas of a system, which
evolve together until a certain waiting time, and are then totally decoupled. In this way we
investigate two types of systems, domain growth problems and spin glasses, and we show that
they behave differently.

1. Introduction

The dynamics of spin glasses and other disordered systems exhibits a very much studied
phenomenon known as ‘ageing’: the behaviour of the system depends on its history, and
experiments show a typical out-of-equilibrium regime on all (accessible) time scales [1]. In
the simplest case one quenches the system into its low-temperature phase at timet = 0, and
the dynamics of the system depends on its age, i.e. the time elapsed since the quench. This
type of behaviour can be studied, for example, by looking at the correlation function of some
local observableO(t), C(t, t ′) = 〈O(t)O(t ′)〉, or at the response of such an observable to
a change in a conjugated external fieldh(t ′): r(t, t ′) = 〈∂O(t)/∂h(t ′)〉. While in the usual
equilibrium behaviour these two-times quantities obey time-translational invariance (TTI)
(C(t, t ′) = C(t − t ′), r(t, t ′) = r(t − t ′)) and the fluctuation–dissipation theorem (FDT)
relating correlation and response, one frequently observes in off-equilibrium dynamics a
dependence onC(t, t ′) ' t−αC(t ′/t), which is referred to as ageing behaviour, and a
violation of FDT.

This kind of ageing behaviour is not restricted to spin glasses: the persistence of out-
of-equilibrium effects even after very long times has been observed in many other systems,
either experimental systems [2], or in computer simulations [3]. In some cases ageing could
be studied analytically [4–9].

The kind of loose definition of ageing that we have used so far seems to be ubiquitous
and to hide a variety of very distinct physical situations. While the mean-field spin glass is
known to be a complicated system with a rough free-energy landscape with many metastable
states, ageing also occurs in much simpler problems like the random walk [7], the coarsening
of domain walls in a ferromagnet quenched below its critical temperature [10], or some
problems with purely entropic barriers [8, 9], all problems in which the free-energy landscape
seems to be very simple.
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It is interesting to find a way to distinguish between these different types of ageing, and
this paper takes some steps towards such a classification. A first classification of ageing
has already been proposed in the literature [5]. In the mean-field dynamics of spin glasses,
it has been shown that the response function exhibits an anomaly in the low-temperature
phase [13, 14]. While it looks mysterious in the framework of equilibrium dynamics, this
anomaly is well understood if one studies off-equilibrium dynamics [5]. The anomaly is
defined there as

χ̄ = lim
t→∞

∫ t

0
dt ′ r(t, t ′) −

∫ ∞

0
lim

tw→∞ r(tw + τ, tw) dτ . (1)

It measures the difference between the susceptibility of the system at large times and the
susceptibility of a hypothetical system which would be at equilibrium. A non-zero anomaly
shows the existence of a long-term memory of the system to some perturbations occurring
at any time. Systems with such an anomaly certainly exhibit strong ageing effects.

In spite of its nice mathematical structure, the anomaly is, in general, not easy to control
and compute (analytically or numerically). In this paper we want to propose another tool
for the classification of ageing. We shall use an overlapQtw(tw + t, tw + t) between
two identical copies of the system, which are constrained to evolve from the same initial
configuration and with the same thermal noise between the initial quench and a timetw,
and then evolve with different realizations of the thermal noise betweentw andtw + t . This
quantity was introduced in [12], and in a study of the ageing dynamics of the spherical spin
glass by Cugliandolo and Dean [15] (slightly different objects involving two copies of the
system evolving with the same noise have also been studied before [11]). We argue that
the asymptotic value of this overlap in the double limit limtw→∞limt→∞Qtw(tw + t, tw + t)

distinguishes between different types of ageing. In a first class of systems the limit is finite
(equal to the Edwards–Anderson parameterqEA in the cases we have studied so far). This
class, which we call type I, includes the models with coarsening of domain walls: we show
it explicitly hereafter in the case of theO(n) model withn → ∞, and within some widely
used assumptions for the domain growth in the non-conserved scalar order parameter case.
The second class, ageing systems of type II, contains the spin-glass-like problems with
complicated free energy landscapes, and we study explicitly thep-spin spherical models
or the zero-dimensional version of the manifolds in a random potential. For this class, the
limit lim tw→∞limt→∞ of the overlap is equal to the minimum possible overlap (i.e. zero for
the p-spin spherical model (withp > 2) andq0 for the zero-dimensional manifolds).

Besides suggesting a first (rough) classification, this overlap function may turn out to
give some intuitive ideas about the energy landscape in which the system evolves, and its
complexity. For example, if we think of a system falling down a ‘gutter’, it is clear that
it will continuously go away from its position attw (the correlation function decreases to
zero), but two copies separated attw will not be able to separate indefinitely, and the overlap
will have a limit at long times which can depend ontw: astw grows, the system gets closer
and closer to equilibrium. Type I systems seem to have such a behaviour.

In contrast, a rugged landscape with many bifurcations, and many different paths, will
allow two copies to really move away from one another, so the overlap will decay to its
minimum possible value, for any finitetw: the distance between the two replicas becomes
the largest possible one.

For one-time quantities, like the energy for example, type I and type II systems seem
to have a similar kind of freezing. The ageing behaviour (the study of two-time quantities)
shows that this freezing is not full. Besides, the study of the overlap between two copies
shows that the freezing in type I systems is in some sense more ‘robust’ than in type II.
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The classification induced by the asymptotic value of the overlap function might coincide
with the one quoted above, using the anomaly of the response. Indeed, all type II systems
that we study are known to possess a non-vanishing anomaly. In type I systems, the
anomaly has been computed so far only in theO(n) model with n → ∞, where it does
vanish (or equivalently for thep = 2 spherical model [15]). The existence of a general
relation between these two criteria remains to be studied. At an intuitive level it may look
plausible: if one thinks of a type I system as evolving in a phase space gutter, it should not
have a long term memory of a perturbation. On the other hand, a type II system evolving
in a rugged landscape will be continuously bifurcating and a change of direction will be
remembered at long times. As we are aware that such intuitive arguments can be very
misleading, we just mention them here as a motivation to further studies of the response
anomaly in various ageing systems.

The paper is organized as follows. In section 2, we define the dynamics and various
quantities we study, and present the general features of equilibrium dynamics. Section 3 is
devoted to the study of various problems of domain growth, with analytical and numerical
results. Type II systems are studied in section 4, where we analyse, in particular,
the behaviour of the zero-dimensional version of the random manifold problem and of
Bouchaud’s model of phase space traps [16, 17]. The last section contains our conclusions.

2. Definitions, equilibrium dynamics

We consider systems described by a fieldφ(x) in a d-dimensional space (we shall also
consider spin systems, with obvious generalizations of the definitions). Given a Hamiltonian
H [φ] = ∫

ddx H(φ(x)), we assume a Langevin dynamics at temperatureT :

∂φ(x, t)

∂t
= − ∂H

∂φ(x, t)
+ η(x, t) (2)

whereη is a white noise, with〈η(x, t)η(x′, t ′)〉 = 2T δd(x − x′)δ(t − t ′) (〈 〉 means an
average over this thermal noise).

The quantities we are mostly interested in are the following:

• the two-time autocorrelation functionC(t, t ′): this is the mean overlap between the
configurations of the field at timest and t ′,

C(t, t ′) = 1

V

∫
ddx 〈φ(x, t)φ(x, t ′)〉 (3)

• the response function

r(t, t ′) = 1

V

∫
ddx

〈
δφ(x, t)

δη(x, t ′)

〉
(4)

• the overlap functionQtw(t, t ′): the system evolves during a certain timetw; at tw a copy
is made, and the two systems obtained, labelled by(1) and (2), evolve independently;
Qtw(t, t ′) is then the overlap between the configuration of one copy at timet and the
other at timet ′:

Qtw(t, t ′) = 1

V

∫
ddx 〈φ(1)(x, t)φ(2)(x, t ′)〉 . (5)

Of course, fort 6 tw or t ′ 6 tw, Qtw(t, t ′) = C(t, t ′).
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Before turning to out-of-equilibrium dynamics, let us first show that the overlap
Qtw(t, t ′) is simply related to the correlation in the case of equilibrium dynamics.

If a system is evolving among a set of states, according to a master equation, with
transition rates obeying detailed balance, i.e.

d

dt
pi(t) =

∑
j

Tijpj (t) Tijp
eq
j = Tjip

eq
i (6)

wherepi(t) is the probability of being in statei at time t , the formal solution is

pi(t) =
∑

j

〈i|eT t |j〉pj (0) (7)

where〈i|eT t |j〉 are the matrix elements of the evolution operator eT t (〈i|T |j〉 = Tij ). The
detailed balance implies that

〈j |eT t |i〉peq
i = 〈i|eT t |j〉peq

j . (8)

If we express this property in terms of the overlap between two replicas evolving in
equilibrium dynamics, we obtain (see figure 1):

Qas(s, t) = Cas(s + t) (9)

where we have definedQas(s, t) = limtw→∞ Qtw(tw+s, tw+t) andCas(t) = limtw→∞ C(tw+
t, tw).

Figure 1. The equilibrium value of the overlap, whentw → ∞ between the first replica at time
tw + s (point B) and the second at timetw + t (point C) is the same as the overlap between D
(time tw − s, before the separation) and C, or between E (timetw − t) and B.

There exist other interesting large-time limits in the problem which exhibit ageing.
In particular, the interesting property of weak-ergodicity breaking [16], defined by
limt→∞ C(tw + t, tw) = 0, expresses the fact that such systems never reach equilibrium. In
the following we will therefore be interested in the function

S(tw) ≡ lim
t→∞ Qtw(tw + t, tw + t) (10)

and, in particular, in its large-tw limit S∞ = limtw→∞ limt→∞ Qtw(tw + t, tw + t). We shall
show that this limit depends on the type of system one considers and allows for a distinction
of various ageing types.
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3. Domain-growth processes

A phenomenon which is often considered as a typical example of an out-of-equilibrium
dynamical evolution is the phase-ordering kinetics [10, 19]. It is the domain growth process
for an infinite system with different low-temperature ordered phases, suddenly quenched
from a disordered high-temperature region into an unstable state at low temperature. Here
we shall keep to the dynamical evolution of systems with a non-conserved order parameter
[10, 19].

The system we study is described by ann-component vector fieldφ(x, t) representing
the density of magnetization at the pointx of a d-dimensional space, as a function of time.
The system is prepared at high temperature, where〈φ〉 = 0 and then rapidly quenched at
t = 0 in a low-temperature region, where there is more than one energetically favourable
state with〈φ〉 6= 0. This situation is well described by a typical coarse-grained free energy:

F =
∫

ddx
[

1
2(∇φ)2 + V (φ)

]
(11)

where the first term represents the energy cost of an interface between two different phases
and V [φ] is a potential with minima at different values ofφ. The state with〈φ〉 = 0 is
unstable at low temperature, so the system evolves by forming larger and larger domains
of a single phase; at a late stage of growth, the typical pattern of domains is self-similar
and the characteristic size of a domain isL(t). This evolution can be studied, for instance,
through a Langevin dynamics with thermal noiseη:

dφ

dt
= ∇2φ − V ′(φ) + η . (12)

Equilibrium is not achieved untilL(t) reaches the size of the sample. In an infinite sample
one thus observes an ageing behaviour in the correlation function. Roughly speaking the
system remembers its agetw through the value of its typical domain sizeL(t).

3.1. TheO(n) model

Interestingly enough, one of the few exactly solved models of coarsening [10], namely the
case of theO(n) model withn large and a constraintφ2 = n, is also related to a problem
which looks like a spin-glass system. Indeed consider the following spin-glass Hamiltonian:

H = −
∑
ij

Jij sisj (13)

wheresi are real spins with a spherical constraint
∑

i s
2
i = n, andJij are random couplings.

This model is usually called the (p = 2) spherical spin glass [20]. Its Langevin dynamics,

dsi

dt
=
∑

j

Jij sj (t) − z(t)si(t) + ηi(t) (14)

wherez(t) is a Lagrange parameter enforcing the spherical constraint, can also be written
in the basis where theJij matrix is diagonal:

dsλ

dt
= (λ − z(t))sλ(t) + ηλ(t) . (15)

Then the dynamical equation reduces to the one of theO(n) model in Fourier space with
λ = −k2. The only important piece of information on theJ matrix is the behaviour of its
spectrum near its largest eigenvalueλ∗. The case of a square root singularity, such as for
instance the Wigner law, is equivalent to ad = 3 coarsening problem. Clearly the spherical
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spin glass does not really have a spin-glass-like behaviour (this has been known for a long
time in statics [20]); however, it exhibits an ageing dynamics, which is related to the growth
of the correlation length in theO(n) model. Recently, Cugliandolo and Dean [15] have
performed a detailed computation of the dynamics of this problem, in which they computed
all the relevant quantities of interest for our discussion. They found ageing in the correlation
function, but the anomaly of the response as defined in (1) vanishes, which shows that the
memory effects are weak. besides, the overlap limitS(tw) = limt→∞ Q(tw + t, tw + t) is
a continuous function oftw, taking values betweenq2

EA and qEA, with S∞ = qEA, and, of
course, limtw→∞ Q(tw + t, tw + t ′) = Cas(t + t ′).

Physically, the system evolves in time through two processes: a thermal noise which
affects evenly all the componentssλ, superimposed onto a deterministic evolution which
amounts to reinforcing the eigenmodes closer to theλ∗, and this deterministic part is
dominant over the thermal noise.

The fact that this system has the propertyS∞ = qEA together with the weak ergodicity
breaking property limtw→∞limt→∞C(tw+t, tw) = 0 suggests the existence of a kind of gutter
in phase space: two replicas, even decoupled, remember forever that they are evolving in
the same canal.

3.2. Scalar order parameter: analytic study

We now turn to the domain growth problem in the case of a scalar order parameter. This
problem cannot be solved exactly but we shall use a well known approximation [18],
recently developed by Bray and Humayun [21]. We refer the reader to Bray’s review [10]
for a detailed presentation of the method. The idea is to take advantage of the universality
of domain growth in the scaling regime: after an initial regime of fast growth, the order
parameter saturates at the equilibrium value inside a domain and the only way for the system
to further decrease the free energy is the reduction of the surface of walls between different
domains. Therefore, the dynamical properties of the system at a late stage of growth are
given by the motions of the walls and, in particular, by their curvature; the particular shape
of the potentialV [φ], provided it has well separated minima, is not crucial. If the growth is
influenced by an external field, the difference between the minima introduced by the field
will be the relevant variable. The universality gives the freedom to choose an appropriate
form for the potential in the free energy, and also a special form for the thermal noise,
which makes the analysis more tractable. Specifically, the Langevin equation is replaced
by

∂φ(x, t)

∂t
= ∇2φ − V ′

0[φ] + η(x, t)V ′
1[φ] (16)

whereη(x, t) is the Gaussian white noise with zero mean and correlator:

〈η(x, t)η(x′, t ′)〉 = 2T δ(x − x′)δ(t − t ′) . (17)

The fieldφ(x, t) is parametrized by an auxiliary fieldm(x, t), through

φ[m] = φ0

(
2

π

)1/2 ∫ m

0
dx exp−(x2/2) = φ0 erf[m/

√
2] . (18)

With the following choice of the two potentials:

V0[φ] = φ2
0

π
exp

(
−2

[
erf−1

[
φ

φ0

]]2)
V1[φ] = φ2

0√
π

exp

(√
2 erf−1

[
φ

φ0

])
(19)
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the fieldm satisfies a very simple equation:
∂m

∂t
= ∇2m + (1 − (∇m)2)m + η . (20)

With the wall profile function (18), the fieldm(x, t) measures the distance of the pointx
from the interface: at infinite distance from the wall, the fieldφ saturates to its equilibrium
value. Moreover, the potentialV0 has the required two-wells shape at the two equilibrium
values. The choice of the potentialV1 does not alter this shape and, as can be seen from
(16) and from the fact thatV ′

1[φ] = φ′, it corresponds to a thermal noise acting only on the
interface. This is an approximation which is not able, for instance, to reproduce the process
of nucleation of a bubble. In other words, the value ofqEA in this case remains fixed at the
T = 0 value,qEA = φ2

0. However, we expect that this approximation will not affect our
main conclusions concerning the various large-time limits of the overlap.

The physical situation of a rapid quench will be represented by taking the boundary
condition form(x, t) to be Gaussian with zero mean and correlator:

〈m(x, 0)m(x′, 0)〉 = δ(x − x′) . (21)

Equation (20) can be solved by neglecting the non-linear term or, more correctly, by
taking into account its mean value. Let us neglect it in a first approach. equation (20) can
then be solved, giving

m(x, t) =
∫

|k|<e−1

ddk

2πd
eikx

[
e(1−k2)tm(k, 0) +

∫ t

0
dt ′ e(1−k2)(t−t ′)η(k, t ′)

]
(22)

wheree is a cut-off given by the width of the interface. The linearity of the equation and
the independence of the boundary condition and the noise preserve the Gaussian character
of the probability distribution for the fieldm. Mean values of functions of the fieldφ can
be computed in terms of the evolution of the first and second moments for the Gaussian
distribution ofm. To compute the correlation functionC(τ + tw, tw) we introduce two fields
m1 = m(x, τ + tw) andm2 = m(x, tw). When computing the overlapQ(τ + tw, τ + tw) the
fields m1 andm2 denote, respectively,m(1)(x, τ + tw) andm(2)(x, τ + tw). In both cases
the joint distribution ofm1 andm2 is a GaussianP(x1, x2), which we parametrize as

P(x1, x2) = γ

2π
√

σ1σ2
exp

[
−γ 2

2

(
x2

1

σ1
+ x2

2

σ2
− 2f x1x2√

σ1σ2

)]
(23)

with σi = 〈m2
i 〉, c12 = 〈m1m2〉 and f = c12/

√
σ1σ2, γ = 1/

√
1 − f 2. In terms of this

distribution the correlation (or overlap) is given by

〈φ[m1]φ[m2]〉 =
∫ +∞

−∞
dx1 dx2 φ(x1)φ(x2)P (x1, x2) = φ2

0
2

π
arcsinf (24)

where the function (18) has been replaced byφ[m] = φ2
0 sign[m], a good approximation in

the large-time regime. The calculation therefore reduces to the computation of the parameter
f in the covariance matrix of the probability distributionP(x1, x2), which is easily obtained
from (22). Defining

F(a, b) =
∫ a

0
dσe−σ

(
1 − σ

b

)−d/2
(

erf

(√
b − σ

e

))d

(25)

we obtain, fortw � 1:

C(τ + tw, tw) = φ2
0

2

π
arcsin

{(
4(τ + tw)tw

(τ + 2tw)2

)d/4

× 1 + T F(2tw, τ + 2tw)

[1 + T F(2(τ + tw), 2(τ + tw))]1/2[1 + T F(2tw, 2tw)]1/2

}
(26)
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and

Q(τ + tw, τ + tw) = φ2
0

2

π
arcsin

{
1 + T F(2tw, 2(τ + tw))

1 + T F(2(τ + tw), 2(τ + tw))

}
. (27)

The asymptotic behaviours ofQ andC are very similar to those studied above in the
domain growth of ann → ∞ component order parameter (orp = 2 spherical model): the
asymptotic relation betweenQ andC at tw → ∞ with τ finite is satisfied and, for fixedtw
andτ large,C has the limiting behaviour

C(τ + tw, tw) ∼
(

tw

τ

)d/4

(28)

while Q does not go to zero and the limiting valueS(tw) is a continuous function oftw,
approaching the equilibrium valueqEA astw grows: S∞ = qEA. So within this approximation
this coarsening problem falls into the type I classification.

Note that when one includes the effect of the gradient squared term in (22), treated as
an average term (as in [10]), the result is similar except for a change in the numerical value
of the functionF in (25), where a termcσ−2 is present, instead of exp(−σ).

In order to check this approximate analytic treatment, we have performed numerical
simulations of domain growth in two dimensions, for a scalar field evolving with a Langevin
equation, and also for Ising spins on a regular two-dimensional lattice, with Glauber
dynamics [27].

3.3. Scalar order parameter: numerical studies

We have simulated the evolution of a scalar fieldφ on a two-dimensional square lattice,
according to the Langevin equation (12), with a quarticV0 and a bold discretization scheme:

φ(i, j, t + 1) = φ(i, j, t) + (φ(i + 1, j, t) + φ(i − 1, j, t) + φ(i, j + 1, t) + φ(i, j − 1, t)

−4φ(i, j, t) + φ(i, j, t) − φ(i, j, t)3)h + η(i, j, t) (29)

whereη is a Gaussian noise with zero mean and variance 2T h, h being the time step used.
We proceed by parallel updating of the field, and vary the time steph. At t = 0, φ(i, j) are
taken as independent random variables uniformly distributed between−1 and 1. We let the
system evolve duringtw according to (29), make a copy of it, and let the two copies evolve
independently, i.e. with independent thermal noises. We record the correlation of each of
the copies with the system at timetw and the overlap between the replicas.

We present simulations at fixed temperature: we record the overlap and the correlation
function for different values oftw, The linear size of the system was of 200 sites, and one
run was made with a 400× 400 lattice. Each simulation was made with three different
values ofh (h = 0.02, 0.04 and 0.08), to check that the results did not depend on the time
step used. We also checked that thet/tw scaling is well obeyed for the correlation function
for large enoughtw; for the overlap, no such scaling is found. We plot the overlap at time
tw + t versus the correlation between timestw and tw + t .

The Q versusC curves show quite clearly that the overlap, after a transient regime
where it decays faster than the correlation, has a finite limit asC goes to zero. This limit
grows withβ and with tw.

This result agrees with the previous analytic study, as far as the asymptotic behaviour
of the overlap and correlation are concerned. We have also performed simulations of
a two-dimensional Ising spin system (with nearest-neighbour ferromagnetic interactions),
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with Metropolis dynamics with random updating†: at each sweep through the lattice, spins
are updated in random order, but this order is the same for both replicas. The results (see
figure 3) agree with those obtained by Langevin dynamics.

Figure 2. Overlap Q(tw + t, tw + t) versus correlation
C(tw + t, tw) for the scalar field in two dimensions, for
β = 6 and different waiting times (from bottom to top,
10, 20, 50 and 180MC steps).

Figure 3. Left: overlapQ(tw + t, tw + t) versus correlationC(tw + t, tw) for the Ising model in
two dimensions, forβ = 2, tw = 23 (bottom) andtw = 24 (top); Right: correlation and overlap
for the Ising model in two dimensions, for different values oftw and t : tw = 23, 24, . . . , 29,
and t = 2, . . . , 210.

Note that we also made computer simulations for a model introduced in [25],
consisting of an Ising ferromagnet on a cubic lattice, with weak next-nearest-neighbour
antiferromagnetic couplings; in this model, the growth is slowed from a power law to a
logarithmic behaviour; nevertheless, we find for the correlation and overlap functions a
similar behaviour as for the simple ferromagnet.

3.4. The XY-model in one dimension

A simple and soluble model where domain growth can be studied without approximations
on the potential is theXY model ind = 1 [26]. Namely, the system has no phase transition
for T > 0, but at very low temperature the correlation lengthLeq is very large. Then at
time scales where the size of the domains is small compared to the correlation length, the
system presents the typical non-equilibrium features of a multiple phase system.

† Notice that the choice of dynamics is important: as soon as the chosen algorithm is not deterministic at zero
temperature (as is the case, for example, if we take Glauber dynamics), the overlap will decrease to zero even at
T = 0.
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In this simple model, the order parameter is a two-dimensional vector fieldφ(x, t) of
fixed lengthφ2 = 1 and the coarse-grained free energy is

F =
∫

dx
1

2

(
∂φ

∂x

)2

. (30)

Using the non-linear mappingφ(x, t) = (cosθ(x, t), sinθ(x, t)), the Langevin
evolution equation for the fieldθ(x, t) can be written easily and solved explicitly without
approximation. The physical situation of a rapid quench from a disordered phase to a
very low temperature can be included in the formalism by taking the boundary condition
θ(x, 0) to be Gaussian with zero mean and correlated at distanceξ . As for the scalar order
parameter model, the linearity of the Langevin equation preserves the Gaussian character of
the probability distribution for the fieldθ and the problem can be solved by computing the
time evolution of the moments. Let us now consider a quench to a very low temperature,
i.e. a situation where the equilibrium correlation lengthLeq is very large, and the time
needed for the domains to reach this size,teq, is also very large: in fact,Leq ' T −1/2, and
teq ' T −2. In a time regime whereτ + tw, tw � 1 butLeq is very large compared to the size
of the domains we have a very simple expression for the correlation functionC(τ + tw, tw)

and for the overlapQ(τ + tw, τ + tw) of two replicas separated at timetw:

C(τ + tw, tw) = exp− 1√
πξ

[
2(τ + 2tw)1/2 − [2(τ + tw)]1/2 − (2tw)1/2

−T ξ

2
{2[(τ + 2tw)1/2 − (τ )1/2] − (2(τ + tw))1/2 − (2tw)1/2}

]
(31)

and

Q(τ + tw, τ + tw) = exp− 1√
π

T (2τ)1/2 . (32)

Since the size of the domain evolves asL(t) ' t1/4, it is clear that there exists at very
low temperatures a regime with 1� tw � τ � teq, where the correlation has already
decayed to zero while the overlap still has a finite value. Indeed,C decays to zero with a
term in the exponential that does not depend on the temperature, but the argument of the
exponential forQ(τ + tw, τ + tw) is L(τ)2/L2

eq.

3.5. Conclusion

The previous study shows that the domain growth processes considered here are essentially
deterministic in nature, and that their phase space is very simple: we indeed exhibit a
time regime 1� tw � t � teq (teq being the equilibration time, which is infinite in
the true ageing problems, but remains finite in the one-dimensionalXY model) where the
system at timetw + t has already drifted away from its position in phase space attw
(C(tw + t, tw) is very small), while two copies separated attw are still evolving together
(Q(tw + t, tw + t) is finite). These type I systems are characterized by the existence of a
finite limit S∞ = limtw→∞ limt→∞ Q(tw + t, tw + t) (with S(tw) = limt→∞ Q(tw + t, tw + t)

growing continuously towardsqEA astw grows). The system can therefore be thought of as
moving along a gutter in phase space. It is reasonable to expect that, in these systems, the
influence of the thermal noise will be limited in time, and there will be no anomaly in the
response function (this has been shown so far only for theO(n) with n → ∞ model [15]).
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4. Type II models

4.1. A particle in a random potential

We now turn to the study of a well known disordered mean-field model, where we expect
a different kind of behaviour for the overlap: the toy model described by the Hamiltonian
[22, 5]:

H = 1
2µ
∑

α

φ2
α + V (φ1, . . . , φN) (33)

whereV is a Gaussian random potential with correlations:

V (φ)V (φ′) = −Nf

(
(φ − φ′)2

N

)
(34)

with

f (b) = (θ + b)1−γ

2(1 − γ )
. (35)

This model describes a particle in a random potential, inN dimensions, but it can also be
interpreted as a spin-glass model: theφα are then soft spins, in a quadratic well1

2µ
∑

α φ2
α,

and they interact viaV ; the statics has a low-temperature spin-glass phase, with continuous
replica-symmetry breaking forγ < 1 (long-range correlations of the disorder) or one-step
replica-symmetry breaking forγ > 1 (short-range correlations). Slightly different forms for
f also allow us to deal with the dynamical equations of the sphericalp-spin [29, 4, 32]
model. This system is described by the Hamiltonian [33, 4]

N∑
i1<···<ip

Ji1...ip si1 . . . sip (36)

with the constraint
∑N

i=1 s2
i = 1, and Gaussian distributed randomp-spin interactions. It

can be described by a toy model, with

f (b) = −1

2

(
1 − b

2

)p

(37)

and a small modification of the dynamical equations (A1) and (A2), which amounts to
implementing the spherical constraint by a time-dependent Lagrange multiplierµ(t).

To compute the overlap function, we introduce two replicasφ(1) and φ(2), with a
Langevin dynamics:

∂φ(i)
α (t)

∂t
= − ∂H

∂φ
(i)
α (t)

+ η(i)
α (t) (38)

where η(1) and η(2) are two white noises with〈η(i)
α (t)η

(i)
α′ (t ′)〉 = 2T δαα′δ(t − t ′) and

η(1)
α (t) = η(2)

α (t) if t 6 tw. For t > tw, η(1) andη(2) are uncorrelated.
Using standard field-theoretic techniques [13, 30], it is now possible to derive the

evolution equations for the correlation and response functions of each replica,C(1)(t, t ′) =
C(2)(t, t ′) = C(t, t ′) and r(1)(t, t ′) = r(2)(t, t ′) = r(t, t ′), and for the overlapQtw(t, t ′), in
the large-N limit. These quantities are defined by (3)–(5) and the corresponding equations
are written in appendix A.
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The large-time limiting values of the correlation defineq̃, q0 andq1 (see [32]):

lim
t→∞ C(t, t) = q̃

lim
t→∞ C(t, t ′) = q0 (39)

lim
τ→∞ lim

t→∞ C(t + τ, t) = q1 .

We will now study the behaviour of the overlap function in different time regimes.
We first study the regime of asymptotic dynamics which corresponds to taking the limit

t, t ′ → ∞, with τ = t − t ′ finite. We thus obtain the functions

ras(τ ) = lim
t ′→∞

r(t ′ + τ, t ′) Cas(τ ) = lim
t ′→∞

C(t ′ + τ, t ′) (40)

Qas(τ, τ
′) = lim

tw→∞ Qtw(tw + τ, tw + τ ′) . (41)

In this regime, time-translational invariance and the fluctuation dissipation theorem (FDT)
are obeyed: Tras(τ ) = − ∂

∂τ
Cas(τ ). It is well known that this asymptotic regime is identical

to equilibrium dynamics for systems with long-range correlations of the disorder [30, 5, 6],
but it is different for short-range correlations [29, 30, 4]. In both cases we have found,
as expected from the general discussion of section 2, thatQas(τ, τ

′) = Cas(τ + τ ′). In
particular, limτ→∞ Qas(τ, τ

′) = limτ ′→∞ Qas(τ, τ
′) = q1.

Let us now consider the ageing regime. This regime corresponds to having time
differences, liket − tw, diverge whentw → ∞. Here we shall consider the overlap function
Qtw(t, t ′) in the ‘double ageing’ regime wheret ′ − tw also diverges.

Figure 4. (t, t ′) ∈ Du, with hu(t
′)/hu(t) = e−τ .

There is no full solution of the ageing regime in spin-glass systems. What has been
proposed so far, in all cases, is an ansatz about the behaviour of the correlation or
response. The first such proposal, by Cugliandolo and Kurchan [4], concerns the case
of the p-spin model. They showed that the dynamical equations can be solved in the
long-time regime (where one can neglect the time derivatives in (A1)) by the ansatz:
C(t, t ′) = C(t ′/t), r(t, t ′) = (x/T )C ′(t ′/t), or actually by any solution obtained from
this through a reparametrization of timet → h(t), with h an arbitrary increasing function.
This solution was subsequently extended to more complicated problems in which the static
solution involves a fullRSB, like the toy model with long-range correlations of the noise [5]
and theSK model [6]. The case of the toy model with short-range correlations of the noise
has also been studied recently [32]. The formalisms developed in [5] (non-overlapping
time domains) and in [6] (triangular relations) represent the same ansatz but look rather
different. Here we shall present the ansatz using mainly the former approach, together with
the necessary ingredients for understanding the correspondence between the two formalisms.

Considering first two time quantities like the correlation or response, the ageing
regime corresponds to sendingt and t ′ both to infinity, the differencet − t ′ being itself
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divergent in this limit. The dynamical equations can be solved in this limit (up to a time
reparametrization), neglecting the time derivatives. We consider non-overlapping domains
in the (t, t ′) plane: two timest and t ′, with t ′ < t , belong to the same domainDu if
we take the limitst → ∞, t ′ → ∞, with the ratiohu(t

′)/hu(t) finite and fixed to e−τ

(0 < τ < ∞). The hu are a family of increasing functions indexed by a parameteru,
such that, ifw < u < v and the timest, t ′ belong toDu, then hv(t

′)/hv(t) = 0 and
hw(t ′)/hw(t) = 1 (a possible choice ishu(t) = exp(tu), in which caseDu is such that
t ′ = t − (t1−u/u)τ ). The domainu = 1, with h1(t) = exp(t), corresponds to the asymptotic
regime whereFDT and TTI hold. We find it convenient to express the fact that(t, t ′) ∈ Du

by the following diagram: it is then easy to show that, if we consider three timest ′ < s < t ,
with (s, t) ∈ Du and (t ′, s) ∈ Dv, then (t ′, t) belong toDmin(u,v) (see figure 5) which is
an ultrametric inequality. If, for example,v > u, we have indeedhu(t

′)/hu(s) = 1, so
hu(t

′)/hu(t) = hu(s)/hu(t).

Figure 5. Ultrametric organizations of times.

In each domainDu, we assume the correlation and response to behave as

C(t, t ′) = Cu(τ) r(t, t ′) = d ln(hu(t
′))

dt ′
ru(τ ) (42)

with a continuity condition: ifDu and Dv are neighbouring domains, withu < v, then
Cu(0) = Cv(∞). Then it is possible to rewrite the equations (A1) (see appendix B for
details), and to show [31] that they possess solutions obeying a generalized form of theFDT
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relation called ‘quasi-FDT’:

xu

dCu

dτ
= −Tru(τ ) . (43)

If we now consider three times,t ′ < s < t (see figure 5) the ansatz implies a simple
relation between correlations at timest, t ′, t, s and t ′, s. When(t ′, s) and (s, t) belong to
two different domains we have

C(t, t ′) = min(C(t, s), C(s, t ′)) (44)

and if they are in the same domainDu, with

hu(t
′)

hu(s)
= e−τ ′ hu(s)

hu(t)
= e−τ then

hu(t
′)

hu(t)
= e−τ ′−τ (45)

so that

C(t, t ′) = Cu(τ
′ + τ) = j−1

u (ju(C(t, s))ju(C(s, t ′))) (46)

whereC(t, s) = Cu(τ), C(s, t ′) = Cu(τ
′) and ju(z) = exp(C−1

u (z)). Equations (44) and
(46) form the basis of the formalism of triangular relations introduced in [6], and applied
to the toy model in [32]. In appendix C we provide the solution for the overlap function
using this formalism.

Since the overlap functionQtw(t, t ′) involves three times, we are now looking for
a function depending on the domainsDu and Du′ , Qu,u′(τ, τ ′), where (tw, t) ∈ Du and
(tw, t ′) ∈ Du′ (hu(tw)/hu(t) = e−τ , hu′(tw)/hu′(t ′) = e−τ ′

).
In appendix B we rewrite the equations (A2) in this frame, and show that they are

solved by the following ansatz:

if u 6= u′ (for exampleu < u′): Qtw(t, t ′) = Cu(τ) = min(C(t, tw), C(t ′, tw)) (47)

if u = u′: Qtw(t, t ′) = Cu(τ
′ + τ) = j−1

u (ju(C(t, tw))ju(C(t ′, tw))) . (48)

This ansatz can be easily understood in terms of the previously introduced diagrams: attw
two ‘time-sheets’ separate (see figure 6) and two ultrametric systems appear, one for each
replica. We stress that this solution exists independently of the actual choice of the disorder
correlation, and therefore it is independent of the precise solution of the ageing dynamics:
whatever the number of non-overlapping domains appearing in this solution, whatever the
actual solutionsCu(τ), there exists a solution for the overlap function in the ageing regime
which is related to the correlation by (48).

Figure 6. Two-sheets ultrametric structure for times larger thantw .
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Depending on the model, the variableu can bea priori continuous, or discrete. It
was shown in [5], using the results from [31], that for the long-range modelu becomes a
continuous variable. In contrast, for short-range models which exhibit statically a one-step
replica-symmetry breaking, it has been shown [6, 32] that the ageing dynamics is solved
by using a single time domainDu∗ (beside theFDT domainD1).

To summarize, we have shown that, in the ageing regime:

• for the long-range model:

Qtw(t, t ′) = min(C(t, tw), C(t ′, tw)) . (49)

In particular, it is then clear that the long-time limit ofQtw(t, t ′) is q0;
• for the short-range model, there exists a functionj such that

Qtw(t, t ′) = j−1(j (C(t, tw))j (C(t ′, tw))) . (50)

Sincej (q0) = 0, and since limt→∞ C(t, tw) = limt ′→∞ C(t ′, tw) = q0, we also have
limt→∞ Qtw(t, t ′) = limt ′→∞ Qtw(t, t ′) = q0.

In both cases, limtw→∞ limt→∞ Qtw(t, t) is q0, different from limt→∞ limtw→∞ Qtw(t, t).
Besides, no finite waiting time is sufficient to give a higher limit thanq0 for limt→∞ Qtw(t, t):
an increase in the waiting time only slows down the dynamics, but has no effect on the
limiting values. No continuous approach to equilibrium can thus be seen in this way.

Note that since the equations (A1), (A2) are causal, a numerical integration is available,
as in [5]. Nevertheless, the integro-differential character of these equations makes it difficult
to reach very long times (a huge amount of computer memory is needed). Therefore, the
numerical integrations we were able to realize, although fully compatible with the previous
study, were not conclusive enough to confirm it.

For the case of thep-spin spherical spin-glass model, an analytic solution of the
equations is also available: they are solved by the ansatz corresponding to the short-
range model, equation (50). Indeed, we propose for the ageing regime the ansatz
Qtw(t, t ′) = Q(tw/t, tw/t ′), and we find that the equation givingQtw(t, t ′) can be rewritten
so that the three timestw, t and t ′ appear only through the ratiostw/t and tw/t ′, and that
Qtw(t, t ′) = 1

q
C(t, tw)C(t ′, tw) is the solution of this equation.

We have thus shown that the overlap in thep-spin (p > 3) spherical model exhibits
ageing in a similar fashion as the correlation function, and decays to zero for any finite
tw (q0 = 0 for this model). This behaviour is thus very different from thep = 2 or the
domain-growth case.

4.2. Ageing in traps

A trap model was introduced in [16] and developed in [17] to reproduce off-equilibrium
dynamics in glassy systems, and ageing. The model consists ofN traps with exponentially
distributed energy barriers. This distribution leads to trapping time with infinite mean, and
thus to ageing.

In the simplest version, [16] the basic object is51(t, tw), probability that the system
has not jumped out of his trap betweentw and tw + t . The overlap between two different
states is zero, and the self-overlap isqEA. The correlation function is thenqEA51(t, tw).

We now deal with two systems aftertw: we introduce5(2)

1 (t, t ′, tw), probability that the
first replica has not jumped betweentw and tw + t , and that the second one has not jumped
betweentw and tw + t ′. The overlapQtw(tw + t, tw + t ′) is then simplyqEA5

(2)

1 (t, t ′, tw).
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If the system is in trapβ (of lifetime τβ) at timetw, this probability is e−t/τβ e−t ′/τβ , and
thus we get5(2)

1 (t, t ′, tw) = 51(t + t ′, tw). The overlap between the replicas is therefore

Qtw(tw + t, tw + t ′) = C(tw + t + t ′, tw) . (51)

If we introduce a multilayer tree, the only difference is that we now have a set of
5j(t, tw) (j = 1, . . . , M), probability that the system has not jumped beyond thej th level of
the tree betweentw andtw +t . It is then clear that the equation (51) is not changed, although
the analytic expression for the correlation function depends on the parameters of the tree.

For this particular model, the equilibrium relation is, in fact, satisfied even for out-of-
equilibrium dynamics, because of the properties of the chosen exponential decay from the
traps. It is then clear that the overlap function goes to zero for large times, for any finite
tw, since limt→∞ C(tw + t, tw) = 0: S(tw) = 0. We have thus the same scenario as for the
toy model: for any finitetw, the overlap decays to its minimum allowed value, while an
infinite tw givesqEA as a limit.

5. Conclusions

In this paper, we have shown that the overlap between two copies of a system, identical
until a waiting time tw, and then totally independent, is a quantity of interest regarding
the geometry of phase space. We have indeed studied this quantity for several models,
and shown that its decay is intimately related to the complexity of the landscape and
to the type of ageing. For simple systems, the long-time limit of the overlap can be
put closer and closer to the equilibrium limitqEA by changing the time the replicas
spend together. In contrast, for systems exhibiting a complex phase space, the limit
of the overlap is always the minimum value, i.e. the two replicas are able to separate
from each other, no matter how long the waiting time is (if it stays finite). This
difference of behaviour can be quantitatively seen by a study of the various long time
limits of the overlap: for any system, limt→∞ limtw→∞ Qtw(tw + t, tw + t) is qEA, but the
inverse order of limits,S∞ = limtw→∞ limt→∞ Qtw(tw + t, tw + t) (and the behaviour of
S(tw) = limt→∞ Qtw(tw + t, tw + t)), distinguishes between ageing in a ‘simple’ phase space,
and type II (spin-glass) systems.
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Appendix A. Dynamical equations for the toy model

In the limit of infiniteN , the dynamical equations for the two-times correlation and response
functions (witht > t ′) read [5]
∂r(t, t ′)

∂t
= −µr(t, t ′) +

∫ t

0
ds m(t, s)(r(t, t ′) − r(s, t ′))

∂C(t, t ′)
∂t

= −µC(t, t ′) + 2
∫ t ′

0
ds w(t, s) r(t ′, s) +

∫ t

0
ds m(t, s)(C(t, t ′) − C(s, t ′))

1

2

dC(t, t)

dt
= −µC(t, t) + 2

∫ t

0
ds w(t, s)r(t, s)

+
∫ t

0
ds m(t, s)(C(t, t) − C(s, t)) + T

(A1)
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and the equations we obtain forQtw are

∂Qtw(t, t ′)
∂t

= −µQtw(t, t ′) + 2
∫ t ′

0
ds Wtw (t, s)r(t ′, s)

+
∫ t

0
ds m(t, s)(Qtw (t, t ′) − Qtw(s, t ′))

1

2

dQtw(t, t)

dt
= −µQtw(t, t) + 2

∫ t

0
ds Wtw (t, s)r(t, s)

+
∫ t

0
ds m(t, s)(Qtw (t, t) − Qtw(s, t)) + T θ(tw − t)

(A2)

with the same notation as [5]:

w(t, t ′) = f ′(b(t, t ′)), m(t, t ′) = 4f ′′(b(t, t ′))r(t, t ′)
b(t, t ′) = C(t, t) + C(t ′, t ′) − 2C(t, t ′)

(A3)

and

Wtw(t, t ′) = f ′(Btw (t, t ′))
Btw (t, t ′) = C(t, t) + C(t ′, t ′) − 2Qtw(t, t ′) .

(A4)

Appendix B. Non-overlapping time domains

We show how to compute one of the integrals of equations (A1), (A2) in the frame of the
ansatz described in [5], using the diagrams introduced in figure 4. We apply this method to
the overlap equation and show that a similar ansatz is a solution.

For (t ′, t) ∈ Du, we parametrize

b(t, t ′) = bu(τ ) r(t, t ′) = d ln(hu(t
′))

dt ′
ru(τ )

m(t, t ′) = d ln(hu(t
′))

dt ′
mu(τ) w(t, t ′) = wu(τ) .

(B1)

The integral
∫ t

t ′ ds m(t, s)r(s, t ′), appearing in (A1), has then three contributions (see
figure B1):

• (t ′, s) ∈ Dv (v > u), wherem(t, s) = mu(τ)d lnhu(s)/ds,
• t ′, t, s in the same domainDu,
• (s, t) ∈ Dv (v > u), wherer(s, t ′) = ru(τ ).

Figure B1. For t ′ < s < t , three regimes can be separated.
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t ′
ds m(t, s)r(s, t ′) = d lnhu(t

′)
dt ′

(
mu(τ)

∑
v>u

∫ ∞

0
dσ rv(σ ) +

∫ τ

0
dσ mu(σ )ru(τ − σ)

+ ru(τ )
∑
v>u

∫ ∞

0
dσ mv(σ )

)
. (B2)

Separating in this way all different contributions in the integrals, we obtain the following
equation forbu(τ ):

0 = bu(τ )

[
−µ +

∑
v6u

∫ ∞

0
ds mv(s)

]
+ 2T −

∫ τ

0
ds mu(s) bu(τ − s)

−4wu(τ)
∑
v>u

∫ ∞

0
ds rv(s) −

∫ ∞

0
ds [mu(τ + s) bu(s) + 4wu(τ + s)ru(s)]

+
∑
v>u

∫ ∞

0
ds [mv(s) bv(s) + 4wv(s) rv(s)] . (B3)

The same method can be applied to the equation for the overlap functionBtw(t, t ′) =
Bu,u′(τ, τ ′). For u, u′ < 1 (with u 6= u′) it reads:

0 = Bu,u′(τ, τ ′)

[
−µ +

∑
v6u

∫ ∞

0
ds mv(s)

]
+ 2T −

∫ τ

0
ds mu(s)Bu,u′(τ − s, τ ′)

−4wu(τ)
∑

u′>v>u

∫ ∞

0
ds rv(s) − 4Wu,u‘ (τ, τ

′)
∑
v>u′

∫ ∞

0
ds rv(s)

−4wu(τ)

∫ ∞

τ ′
ds ru′(s) − 4

∫ τ ′

0
ds Wu,u‘ (τ, τ

′ − s)ru′(s)

−
∫ ∞

0
ds [mu(τ + s)bu(s) + 4wu(τ + s)ru(s) − mu(s)bu(s) − 4wu(s)ru(s)]

+
∑
v>u

∫ ∞

0
ds [mv(s)bv(s) + 4wv(s)rv(s)] . (B4)

If we insert in this equation the ansatz

Bu,u′(τ, τ ′) = bu(τ ) (if u < u′) (B5)

we reobtain equation (B3). Foru = u′, the equation is slightly different, and the ansatz

Bu,u(τ, τ
′) = bu(τ + τ ′) (B6)

together with the quasi-FDT, again gives back equation (B3), evaluated atτ + τ ′.

Appendix C. Triangular relations

We derive the solution for the overlap function using the formalism of triangular relations
[6, 32]. Neglecting time derivatives, and distinguishing ageing andFDT regimes in (A1)
and (A2), the final equation for the slow varying part (i.e. non-FDT) of Btw(t, t ′) =
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C(t, t) + C(t ′, t ′) − 2Qtw(t, t ′) reads (withq = 2(q̃ − q1)):

0 = Btw(t, t ′)
[
−µ +

∫ t

0
ds m(t, s)

]
+ 2T − 2q

T
[Wtw(t, t ′) − f ′(q)]

+4
∫ t

0
ds w(t, s)r(t, s) − 4

∫ tw

0
ds w(t, s)r(t ′, s) − 4

∫ t ′

tw

ds Wtw (t, s) r(t ′, s)

+
∫ t

0
ds m(t, s)b(t, s) −

∫ tw

0
ds m(t, s)b(t ′, s) −

∫ t

tw

ds m(t, s) Btw (t ′, s)

(C1)

where now all the times in the equations belong to the ageing regime.
The approach of triangular relations measures the various time domains directly in terms

of the distanceb(t, t ′). Indeed, there is a one-to-one correspondence betweenb(t, t ′) (at
large times) and the functionsbu(τ ). More precisely, ift, t ′ → ∞ with b(t, t ′) fixed to B,
then t, t ′ belong toDu, with hu(t

′)/hu(t) = e−τ , whereu and τ are fixed bybu(τ ) = B.
Then, the quasi-FDT can be expressed as

r(t, t ′) = X[b(t, t ′)]
∂b(t, t ′)

∂t ′
(C2)

whereX[b(t, t ′)] = xu/(2T ). Similarly, the ultrametric structure of time domains described
in (44), (46) can be written in a compact form as a triangular relation [6, 32]:

b(t, t ′) = g(b(t, s), b(s, t ′)) (C3)

with g(b, b′) = max(b, b′) when b and b′ belong to different domains (also named
‘blobs’ [6]), andg(b, b′) = j−1(j (b)j (b′)) within the same domain.

The ansatz concerning the functionBtw reads

Btw(t, t ′) = γ [b(t, tw), b(t ′, tw)] (C4)

whereγ is a function to be determined. Settingb(t, tw) = bw, b(t ′, tw) = b′
w, b(t, t ′) = b,

b0 = 2(q̃ − q0) and

F(b) = −
∫ q

b

ds X(s) (C5)

we obtain:

0 = γ (bw, b′
w)

[
−µ + 4

∫ q

b0

ds f ′′(s)X(s)

]
+ 2T − 2q

T
[f ′[γ (bw, b′

w)] − f ′(q)]

+4f ′(b0) F (b0) + 4
∫ q

b0

ds f ′′(s)X(s) s + 4
∫ q

b0

ds f ′(s)X(s)

+4
∫ bw

b0

ds f ′′(s)F [ḡ(b, s)] − 4
∫ bw

b0

ds f ′′(s)X(s)ḡ(b, s)

+4
∫ b

bw

ds F [ḡ(b, s)]f ′′[γ (bw, ḡ(s, bw))]γ ′(bw, ḡ(s, bw))ḡ′(s, bw)

−4
∫ q

bw

ds f ′′(s)X(s)γ [ḡ(s, bw), b′
w] (C6)

where ḡ is the reciprocal function ofg: given three timest ′ < s < t , in the limit
t ′, s, t → ∞,

b(t, t ′) = g(b(t, s), b(s, t ′)), b(s, t ′) = ḡ(b(t, s), b(t, t ′)) . (C7)
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Equation (C6) is a functional equation that givesγ in terms off , X and ḡ.
Using theg-function described above, one can check from (C6) that the solution is

γ (x, y) = g(x, y) (this means that the relation between the overlap functionBtw(t, t ′) and
the correlation functionsb(t, tw) andb(t ′, tw) is the same as the triangular relation between
the correlation functions). This way, one gets back the result for the overlap given in (49),
(50).
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